
I.

UMIACS-TR-89-57
CS-TR-2263

June, 1989

Software Development: A Paradigm for the Future 1"

Victor R. Basili .._.
Institute for Advanced Computer Studies

Department of Computer Science
University of Maryland _'_sz_ Z>,,_/2/_9

College Park, MD 20742 _,,2/'7 A/7--

/¢./- d/- c'/?__._.

ABSTRACT

This paper offers a new parad_ for software development that treats software
development as an experimental activityj. It provides built-in mechanisms for learning

how to develop software better and reusing previous experience in the forms of

knowledge, processes and products. It uses models_ and measures to aid in the tasks_rr.._.__of, = _-r _/-_-

characterization, evaluation and motivation. If proposes an organization scheme Cfor __
separating the project-specific focus from the organization's learning and reuses"

focuses of software development. It discusses the implications of this approach for

corporations, research and education,,,and presents some research activities currently

underway at the University of Maryla'r'd that support this approach),

t"

*f Research supported in part by NASA grant NSG-5123, AFOSR grant 87--0130, ONR grant N00014--87-K-0307, and ITAL-

SIEL (through the Industrial Associates Program of the Department of Computer Science). Keynote address, COMPSAC '89, Or-

lando, FL, Sept. 1989.

-2-

1. INTRODUCTION

We have been struggling with the problems of software development for

many years [31,64]. Organizations have been clamoring for mechanisms to

improve the quality and productivity of software. We have evolved from focus-

ing on the project, e.g. schedule and resource allocation concerns, to focusing on

the product, e.g. reliability and maintenance concerns, to focusing on the pro-

cess, e.g. improved methods and process models [27,33,39,56]. We have begun to

understand that software development is not an easy task. There is no simple

set of rules and methods that work under all circumstances, We need to better

understand the application, the environment in which we are developing pro-

duets, the processes we are using and the product characteristics required.

For example, the application, environment, process and product associated

with the development of a toaster and a spacecraft are quite different with

respect to hardware engineering. No one would assume that the same educa-

tional background and training, the same management and technical environ-

ment, the same product characteristics and constraints, and the same processes,

methods and technologies would be appropriate for both. They are also quite

different with respect to software engineering.

We have not fully accepted the need to understand the differences and learn

from our experiences. We have been slow in building models of products and

processes and people for software engineering even though we have such models

for other engineering disciplines. Measurement and evaluation have only recently

become mechanisms for defining, learning, and improving the software process

and product [3,34].

We have not even delineated the differences between such terms as tech-

nique, method, process and engineering. For the purpose of this paper we define

a technique as a basic technology for constructing or assessing software, e.g.,

reading or testing. We define a method as an Organized management approach

based upon applying some technique, e.g., design inspections or test plans. We

define a process model as an integrated set of methods that covers the life cycle,

e.g., an iterative enhancement model using structured designs, design inspections,

etc. We define software engineering as the application and tailoring of tech-

niques, methods and processes to the problem, project and organizational charac-
teristics.

There is a basically experimental nature to software development. We can

draw analogies from disciplines" like experimental physics and the social sciences.

As such we need to treat software developments as experiments from which we

can learn and improve the way in which we build software.

-3-

2. THE IMPROVEMENT PARADIGM

Based upon our experiencesin trying to evaluate and improve the quality in
several organizations [5,29,53,58], we have concluded that a measurement and
analysis program that extends through the entire life cycle is a necessity: Such a
program requires an organization to adopt a long term, quality-oriented, organi-
zational life cycle mode, which we call the Improvement Paradigm [4,19]. The
paradigm has evolved over time, based upon experiences in applying it to
improve various software related issues, e.g., quality and methodology. In its
current form, it has four essential aspects:
1 Characterizing the environment. This involves data that characterizes the

resourceusage, changeand defect histories, product dimensionsand environ-
mental aspectsfor prior projects and predictions for the current project. It
involves information about what processes,methods and techniques have
beensuccessfulin the past on projects with thesecharacteristics. It provides
a quantitative analysis of the environment and a model of the project in the
context of that environment.

2 Planning. There are two integrated activities to planning that are itera-
tively applied:

(a) Defining goals for the software processand product operationally rela-
tive to the customer, pr0ject, and organization: This consists of a
top-down analysis of goals that iteratively decomposeshigh-level goals
into detailed subgoals. The iteration terminates when it has produced
subgoals that we can measuredirectly. This approach differs from the
usual in that it defines goals relative to a specific project and organiza-
tion from several perspectives. The customer, the developer, and the
development manager all contribute to goal definition. It is, however,
the explicit linkage between goals and measurement that distinguishes
this approach. This not only defineswhat good is but provides a focus
for what metrics are needed.

(b) Choosing and tailoring the processmodel, methods, and tools to satisfy
the project goals relative to the characterized environment. Under-
standing the environment quantitatively allows us to choose the
appropriate processmodel and fine tune the methods and tools needed
to be most effective. For example, knowing prior defect histories
allows us to chooseand fine tune the appropriate constructive methods

for preventing those defects during development (e.g. training in the

application to prevent errors in the problem statement) and assessment

methods that have been historically most effective in detecting those

defects (e.g., reading by stepwise abstraction for interface faults).

3 Analysis. We must conduct data analysis during and after the project. The

information should be disseminated to the responsible organizations. The

operational definitions of process and product goals provide traceability to

metrics and back. This permits the measurement to be interpreted in con-

text ensuring a focused, simpler analysis. The goal-driven operational meas-

ures provide a framework for the kind of analysis needed. During project

4

4

development, analysis can provide feedback to thecurrent project in real

time for corrective action.

Learning and Feedback. The results of the analysis and interpretation phase

can be fed back to the organization to change the way it does business based

upon explicitly determined successes and failures. For example, understand-

ing that we are allowing faults of omission to pass through the inspection

process and be caught in system test provides explicit information on how

we should modify the inspection process. Quantitative histories can improve

that process. In this way, hard-won experience is propagated throughout

the organization. We can learn how to improve quality and productivity,

and how to improve definition and assessment of goals. This step involves

the organization of the encoded knowledge into an information repository or

expereince base to help improve planning, development, and assessment.

• Characterize the current project environment.

• Set up goals and refine them into quantifiable questions and metrics for successful project

performance and improvement over previous project performances.

• Choose the appropriate software project execution model for this project and supporting

methods and tools.

• Execute the chosen processes and construct the products, collect the prescribed data, validate

it, and and analyze the data to provide feedback in real-time for corrective action on the

current project.

• Analyze the data to evaluate the current practices, determine problems, record the findings

and make recommendations for improvement for future projects. This is an off-line process

which involves the structuring of experience so that it can be reused in the future.

• Proceed to step 1 to start the next project, armed with the recorded, structured experience

gained from this and previous projects.

4--

FIGURE 1: THE IMPROVEMENT PARADIGM

The Improvement Paradigm is based upon the assumption that software

product needs directly affect the processes used to develop and maintain the pro-

duct. We must first specify our project and organizational goals and their

achievement level. This specification helps determine our processes. In other

words, we can't define the processes and then determine how we are going to

achieve and evaluate certain project characteristics. We must define the project

goals explicitly and quantitatively and use them to drive the process.

As it stands, the improvement paradigm is a generic process whose steps

need to be instantiated by various support mechanisms. It requires a mechanism

for defining operational goals and transforming them into metrics (step 2a). It

-5-

requires a mechanism for evaluating the measurement in the context of the goals

(step 3). It requires a mechanism for feedback and learning (step 4). It requires

a mechanism for storing experience so that it can be reused on other projects

(steps 1,2b). It requires automated support for all of these mechanisms. In the

next three sections, we will discuss mechanisms that have been used to support

these activities. In the last half of the paper, we will discuss a proposed organi-

zational structure that allows these activities to be managed and evolve.

2.1. The Goal/Question/Metric Paradigm

The Goal/Question/Metric (GQM) paradigm is a mechanism for defining

and evaluating a set of operational goals, using measurement on a specific pro-

ject. It represents a systematic approach for setting the project goals tailored to

the specific needs of an organization, defining them in an operational, tractable

way by refining them into a set of quantifiable questions that in turn implies a

specific set of metrics and data for collection. It involves the development of

data collection mechanisms, e.g., forms, automated tools, the collection and vali-

dation of data. It includes the analysis of the collected data and computed

metrics in the appropriate context of the questions and the original goals.

The GQM paradigm was originally developed for evaluating defects for a set

of projects in the NASA/GSFC environment [28]. The application involved a set

of case study experiments. It was then expanded to include various types of

experimental approaches, including controlled experiments [4,22,25].

The process of setting goals and refining them into quantifiable questions is

complex and requires experience. In order to support this process, a set of tem-

plates for setting goals, and a set of guidelines for deriving questions and metrics

has been developed [19]. These templates and guidelines reflect our experience

from having applied the GQM paradigm in a variety of environments.

Goals are defined in terms of purpose, perspective and environment. Dif-

ferent sets of guidelines exist for defining product-related and process-related

questions. Product-related questions are formulated for the purpose of defining

the product (e.g., physical attributes, cost, changes and defects, user context),

defining the quality perspective of interest (e.g., functionality, reliability, user

friendliness), and providing feedback from the particular quality perspective.

Process-related questions are formulated for the purpose of defining the process

(process conformance, domain conformance), defining the quality perspective of

interest (e.g., reduction of defects, cost effectiveness of use), and providing feed-

back from the particular quality perspective.

The GQM provides a mechanism for supporting step 2(a) of the Improve-

ment Paradigm which requires a mechanism for defining operational goals and

transforming them into metrics that can be used for characterization, evaluation,

-0-

Goal
o_ .n

Question_lQ n_k i

 uoTi ._ ' _

d _ m4 d3 dr m s

FIGURE 2: THE GOAL/QUESTION/METRIC PARADIGM

prediction and motivation. It supports step 3 by helping to define the experi-

mental context and providing mechanisms for the data collection, validation and

analysis activities. It also supports step 4 by providing quantitative feedback on

the achievement of goals.

The GQM was originally used to define and evaluate goals for a particular

project in a particular environment. In the context of the Improvement Para-

digm, the use of the GQM is expanded. Now, we can use it for long range cor-

porate goal setting and evaluation. We can improve our evaluation of a project

by analyzing it in the context of several other projects. We can expand our

level of feedback and learning by defining the appropriate synthesis procedure for

lower-level into higher-level pieces of experience. As part of the IP we can learn

more about the definition and application of the GQM in a formal way, just as

we would learn about any other experiences.

2.2. The TAME Project

The TA_E_ project [18,19] recognizes the need to characterize, integrate and

automate the various activities involved in instantiating the Improvement Para-

digm, for use on projects. It delineates the steps performed by the project and

creates the idea of an experience base as the repository for what we have learned

during prior developments. It recognizes the need for constructive and analytic

activities and supports the tailoring of the software development process.

'sp

con-

struc-

tire

arla_

lyric

characterizing

characterize

environment

m

t--
I
!

m.

planning
what i how

set

goals

I

i
J
i
I

i

I

I

[
I

I i

plan

for

construction

±
T

plan

for
E

analysis

-..)

executing

construct
I

analyze

FEEDBACK LOOPS FOR FUTURE PROJECTS
>

EXPERIENCE BASE

FIGURE 3: THE TAME SYSTEM

The TAME system offers an architecture for a software engineering environ-

ment that supports the goal generation, measurement and evaluation activities.

It is aimed at providing automated support for managers and engineers to

develop project specific goals and specify the appropriate metrics needed for

evaluation. It provides automated support for the evaluation and feedback on a

particular project in real time as well as help prepare for post mortems.

The Tame project was initiated to understand how to automate as much of

the paradigm as possible using whatever current technology is available and to

determine where research is needed. It provides a vehicle for defining the con-

cepts in the paradigm more rigorously.

A major goal for the TAME project is to create a corporate experience base

which incorporates historical information across all projects with regard to

8

project, product and processdata, packagedin such a way that it can be useful
to future projects. This experiencebasewould contain asa minimum the histori-
cal data baseof collecteddata and interpreted results, the collection of measured
objects, such as project documents,and collection of measurementplans, such as
GQM models for various projects. It should also contain combinations and syn-
thesis of this information to support future software development and mainte-
nance.

TAME is an ambitious project. It is assumed it wilt evolve over time and

that we will learn a great deal from formalizing the various aspects of the

Improvement Paradigm as well as integrating the various sub-activities. It will

result in a series of prototypes, the first of which is to build a simple evaluation

environment. Building the various evolving prototypes and applying them in a

variety of project environments should help us learn and test out ideas.

Tame provides mechanisms for instantiating the Improvement Paradigm by

providing an experience base to allow the storing of experience so that it can be

used on other projects (steps 1,2a), further defining the various steps to be per-

formed (steps 1,2,3,4), and automating whatever is possible.

3. A REUSE-ORIENTED SOFTWARE ENGINEERING MODEL

The Improvement Paradigm, as instantiated in the TAME system, assumes

that improvement can be achieved by iterating planning, execution of plans, and

feedback across projects within an organization. Feedback can be viewed as

reusing experience from the ongoing or prior projects to improve the planning or

execution of ongoing or future projects. Learning can be viewed as the process of

accumulating and packaging experience so it can be reused effectively. Thus, the

paradigm explicitly recognizes the need to capture and reuse knowledge, pr6ducts

and processes from prior projects.

On the other hand, it should be noted that reuse can be an effective

mechanism only if it is paired with learning and viewed as an integral part of an

improvement-oriented software evolution process model. If we accept the fact

that a better understanding of a process allows for more effective reuse, "reuse

orientation" and "improvement orientation" of a process model are identical

attributes. Both are supported by experimentation.

In a traditional software process model, learning and reuse only occur

because of individual efforts or by accident.- They are not explicitly supported

and called out as desired characteristics of the development process. As a conse-

quence, this experience is not owned by the organization (via the project data-

base) but rather owned by individual human beings and lost after the project has

been completed. A reuse-oriented process model must view reuse, learning and

feedback as integral components, and place all experience, including software

"evolution methods and tools, under the control of an experience base [20].

Since improvement requires the feedback of available experienceand feed-
back is based on learning and reuse activities, a requirement for such a process
model is that it support systematic learning and reuse. Systematic learning
requires support for the off-line recording, generalizingor tailoring, and formaliz-
ing of experience. Systematic reuse requires support for (re-)using existing
experience. Off-line activities are performed independent of any particular pro-
ject in order to improve the reuse potential of existing experiencein the experi-
encebase.

Project goals are typically directed towards the development of a specific
system. Thus off-line activities must have their own organizational structure.
They cannot be part of the normal development organization because they
require a different focus, a different set of processes,and an independent cost
base.

For example, the objective of the recording process is to create a repository

of well specified and organized experience. It requires effective mechanisms for

collecting, validating, storing and retrieving experience. This should not be part

of the project focus. The project can contribute by making its experience avail-

able to this independent organization, but cannot itself oversee the recording. It

might not even be clear to the project what is worth recording.

The objective of generalizing existing experience prior to its reuse is to make

a candidate reuse object useful in a larger set of potential target applications.

The objective of tailoring existing experience prior to its potential reuse is to

fine-tune a candidate reuse object to fit a specific task or exhibit special attri-

butes, such as size or performance. Clearly a project cannot afford to generalize

or tailor experience for another project within its budget constraints. Even

worse, it may not have the perspective to do so since objectives and characteris-

tics are different from project to project, and even more so from environment to

environment. Generalizing and tailoring require a broader perspective of the

organization and the products it develops.

The objective of formalizing existing experience prior to its potential reuse is

to encode it in more precise, better understood ways. Off-line tailored or gen-

eralized experience needs to be formalized to increase its reuse potential and

satisfy general reuse needs within an organization. The more we can formalize

experience, the better it can be reused.

Formalization activities include the movement from informal knowledge

(e.g., concepts), to structured or s¢hematized knowledge (e.g., methods), or even

to completely formal knowledge or automation (e.g., tools). It requires models

of the various reuse objects, notations for making the models more precise, nota-

tions for abstracting reuse object characteristics, mechanisms for validating these

models, and mechanisms for interpreting models in the appropriate context.

Clearly the project has neither the budget nor the need to formalize its own

experience. : == : _ :...............

- 10-

Reuserequires a precisespecification of the reusecontext including the evo-
lution process that is expected to enable reuse, and the characteristics of the
available candidate reuse objects. The objective of a reuse--orientedsoftware
evolution processmodel is to support the useof previously accumulated experi-
ence during such reuse activities as: (a) specifying reuse needs in a way that
allows matching them with descriptions of available experience, (b) finding and

understanding appropriate reuse candidates, (c) evaluating reuse candidates in

order to pick the most promising candidate, (d) actually tailoring the reuse can-

didate if necessary, (e) integrating the reuse candidate into the ongoing software

project, and (f) evaluating the software project.

A reuse-oriented software evolution environment is an integral part of the

improvement paradigm. The mechanisms supplied by the TAME system to sup-

port that paradigm are consistent with the mechanisms needed to support the

reuse environment model with its experience base. It provides a mechanism for

evaluating the recorded experience, helping us to decide what and how to reuse,

tailor and analyze. It captures experience in the form of data from which models

can be built to formalize experience. It supports continuous learning.

It is clear that an experience base is a key component of the reuse and

improvement paradigms. A project needs help in accessing the reusable experi-

ence. If the experience is available (recorded), appropriate (tailored or general-

ized), and well-packaged (formalized), it can be used by a project. But an

experience base is more than a physical entity. It is an organization that must

support all the off-line activities that support its creation and use.

4. DIVIDING UP THE RESPONSIBILITIES AND ACTIVITIES

Based upon the prior discussion, the implementation of the Improvement

Paradigm would best be served by two separate and distinct organizational struc-

tures. One organization is project-oriented. Its goal is to deliver the systems

required by the customer. We will call this the Project Organization. The other

organization, which we will call the Experience Factory, will have the role of

monitoring and analyzing project developments, developing and packaging

experience for reuse in the form of knowledge, processes, tools and products, and

supplying it to the Project Organization upon request. The Experience Factory

represents the experience base discussed above and the various activities associ-

ated with building and modifying it, controlling its access, and interfacing to the

Project Organization.

Each project in a Project Organization can choose its process model based

upon the characteristics of the project, taking advantage of prior experience with

the various process models from the experience base in the Experience Factory.

It can access information about prior system requirements and solutions, effective

methods and tools and even available system components. Based upon access to

this prior experience, the project can choose and tailor the best possible process,

methods and tools. It can reuse prior products tailored to its needs.

-11-

PROJECT ORGANIZATION

characterize

environment

TAME Process Model

set

goals

$---

select

methods

&

tools

construct

t+

_ analyze

renneT 1record
formalize

t
a

1

1
O
r

informal schematized)roductized

PR()JECT SPE(IFIC

D()MAIN SPE(_IFIC

3ENER'AL

Experience Base

II

r
a

1
1
Z
e

EXPERIENCE FACTORY

FIGURE 4: IMPROVEMENT AND REUSE

ORIENTED-SOFTWARE ENGINEERING MODEL

The Experience Factory analyzes the project development for all systems

developed by the corporation. Based upon this it recognizes commonality among

projects, generalizes knowledge and packages it for use across all projects. It

creates a repository of reusable information. For example, it can develop resource

models, defect models, and risk management models and tailor them for the

- 12-

particular projects. It can develop processes, methods, techniques and tools and

tailor them based upon the characteristics of the particular project. This can be

accomplished based upon the Factory's analysis of the success and failure of the

various activities across many projects. It can generate system components, at

various levels of the architectural hierarchy based upon !ts recognition of com-

monality.

4.1. Some Specific Activities in the Project Organization

Let us consider the activities of the Project Organization with regard to the

development of a system and how it might use the Experience Factory while

applying the improvement paradigm.

At the start of a project, project management functions consist of activities

such as resource and schedule planning, organizing, and staffing. These are

covered by the characterizing and planning functions in the Improvement Para-

digm.

During the characterizing phase, based upon its needs and characteristics,

the project can access the experience base for the information about similar pre-

vious projects. This provides the project manager with a context for planning

that includes resource estimation and allocation information, personnel experi-

ence, software and hardware available for reuse, environmental characteristics of

concern and sets of baselines for resources, schedules, defects, etc. The project

can store information on its own characteristics back into the experience base for

analysis.

During the planning phase, the project can analyze prior goals and use them

as defined or tailor them (or have them tailored by the Component Factory) for

its needs. It can access the collection of construtive and analytic methods and

tools, that have been effective and choose the appropriate ones that will help

satisfy its goals. The goals and methods are influenced by the knowledge gained

from the characterization phase, specifically with regard to elements of prior sys-

tems that can be reused. These elements include data, such as baselines, process

models that have been successful, including methods and techniques that have

been tailored and tools that support those methods, and components of prior pro-

jects such as requirements, design or code that can be adapted for the current

project. The goals define the kinds of data that need to be collected as well as

the mechanisms needed for collection. This provides the manager with informa-

tion about what feedback will be provided for the project during development.

The goals and process model, as tailored for the project, are stored in the experi-

ence base for monitoring the current project and expanding the experience base

for future projects.

- 13 -

PROJECT ORGANIZATION

needs and characteristics

of previous projects

characterizing
needs and characteristics

(tailored to current project)

planning
,(

active reuse of previous plans

for construction and analysis

plans for construction and analysis

(tailored to project characteristics)

construction
i •

!(according to some

construction model)

tr ackin

analysis
(track construction)

construction plans,

+ reuse methods,tools and products

new products

analysis plans,

_+ reuse measurement tools

collected data

feedback/learning <

analysis plans (interpretation)

data from current project,

data/interpretation from

previous projects

feedback and

new knowledge

EXPERIENCE

FACTORY

},

V I

v

FIGURE 5: ACCESSING THE EXPERIENCE FACTORY

Project execution covers the directing and controlling activities as well as

the development activities.

During the execution phase, the project proceeds using the tailored process

model, methods, techniques, and tools as specified in the planning phase. It uses

prior product parts, supplied by the experience base. Feedback is supplied to

project management to support directing and controlling of the project. During

execution, project experiences, components and data are returned to the Experi-

ence Factory and feedback is provided to the project.

- 14-

At project conclusion,the overall project is analyzed and the results are fed

back to the project as well as packaged and incorporated into the experience base

for use on future projects.

4.2. Some Specific Activities in the Experience Factory

The Experience Factory plays several roles. It builds and maintains the

experience base, it interfaces with the project in the Project Organization by pro-

viding information from the experience base and developing those elements that

are requested by the project based upon its current level of expertise, e.g.,

tailored methods and tools and software components, and it acts as a quality

assurance organization, providing feedback to the project with respect to its

goals. As such it has several process models associated with it.

In building and maintaining the experience base, the Experience Factory

performs the learning and reuse activities of recording, generalizing and tailoring,

and formalizing. The degree to which it can perform these activities depends

upon the breadth and depth of the information available and the level of tech-

nology.

It records information gathered from the various project developments. For

example, it saves experiences from the projects it is monitoring, such as code

modules, lessons learned on the project from the application of the constructive

and analytic processes and measurement data, such as resource and defect data.

It generalizes or tailors the information that it has gathered. For example,

it uses the project-specific measurement data across several projects to create

baselines such as defect profiles; it develops generic packages from project specific

packages or instantiates a generic package for a specific project; it refines a

design technology based on the lessons learned from applying it on a specific pro-

ject; it parameterizes a cost model for a project or uses data from the project to

improve the estimation capability of the model.

It formalizes the information in the experience base to enhance its reuse

potential. For example, it supplies code modules with their functional

specifications and other appropriate documentation such as characterizing attri-

butes, when needed; it makes more precise the steps in applying a method based

upon lessons learned from its application; it builds cost models empirically based

upon the data available; it develops management support systems based upon the

available data and lessons learned; it builds automated support for methods.

In responding to requests from a project, it provides whatever information it

has available from the experience base and the people. The level of support

clearly depends upon the state of the art in the packaging of experience. The

interface with the Project Organization will change over time, starting with small

packets of experience and building to higher level ones.

-15-

PROJECT

ORGANIZATION
EXPERIENCE FACTORY

h

products

models

data

i
lessons learned

direct feedback

a
n
a
1
Y
.s
1
S

products

data

lessons learned

models

baselines

tools

consulting

S
Y
n
t
h
e
s
1
s

----9

Experience

Base

formalize

tailor

generalize

FIGURE 6: ACTIVITIES IN THE EXPERIENCE FACTORY

The actual information supplied depends upon the request and what is

currently available in the experience base. For example, during characterization,

it provides baselines and estimation models, and information on packaged pro-

ducts, such as requirements templates or code modules. General defect baselines

can be tailored to the specific project by limiting the projects considered to those

with the same characteristics as the current project, e.g., same application

domain, same process model.

During planning it supplies GQM models and process models, methods, tools

and techniques. These can be obtained directly from the experience base or

tailored for the needs of the project. For example, assuming that inspections are

-16-

chosen for the project and knowing the classes of faults found in similarly

classified projects, the component factory might tailor the reading technology

within inspections to concentrate on locating the kinds of faults that tend to

occur in this type of project. They can also provide training and consulting on

the Use of the methods and models.

During project execution, they can act as a contractor supplying various lev-

els of project components. In fact from the Project Organization perspective, any

component that can be well specified can be delivered by the Experience Factory.

In turn, the Experience Factory can respond to the request by delivering an exist-

ing component, modifying an existing component, e.g. instantiating a generic

package from the experience base, or developing the component from scratch and

adding it to the experience base.

If we view quality assurance as the act of leading, teaching, and auditing the

process, then it implies an organizational structure independent but interactive

with the projects. (Note that this is different from quality control, which we

define as the act of directing, influencing, verifying, and correcting the product,

which implies a project controlled organization.) The Experience Factory is an

ideal location for the quality assurance activities.

In acting as a quality assurance organization, the Experience Factory audits

activities and collects the prescribed data, provides feedback to the project in

real time, and offers training in the various planning, constructive, and analytic

approaches. The quality assurance activities is consistent with the activities of

building and maintaining the experience base and responding to requests from

the Project Organization. It also provides an independent chain of command and

a corporate perspective with regard to goals, data collection, process and pro-
ducts.

4.3. Viewing the Experience Factory as a Component Factory

As a particular dimension of the Project Organization and the Experience

Factory, consider the activities of the Project Organization with regard to the

development of a system and how it might use the Factory from the point of

view of code development, e.g., as a Component Factory. We can view the pro-

ject organization within the Project Organization as having the following activi-
ties:

Requirements Definition: The system analysts will interact with the custo-

mer to determine project requirements. It is assumed that the analysts will know

the application domain and what is available in the repository for reuse. They

will have access to repository information about what kinds of components are

available so they can make tradeoff decisions, negotiating with the customer for

function vs. price.

- 17-

Initially, this negotiation will be limited since the repository will be sparsely
populated. This should change over time as the repository fills with com-
ponents. It should be noted that the system analyst can useFactory components
for building and analyzing prototypes of the system.

Specification and Design: The requirements will be turned into a system
design and specification for the required components. Those components that
can be well specified can be turned over to the Experience Factory and orders
will be filled for components.

Initially, the specifications will be for low level componentssince the Factory
will begin bottom up. As time goeson and the repository builds up in terms of

components, and the technology for recognizing, specifying and integrating larger

pieces of systems develops, larger components can be ordered.

The Experience Factory operates according to several process models. When

an order for a component arrives, it can check its repository for the appropriate

component or order it externally if it is available from an outside vendor. It can

develop it from scratch, using verification technology, based upon the fact that it

has the specification and the component it is developing is limited in size. How-

ever, given that it has been required to deliver such a component, it can decide

whether the component is of general use, from its knowledge of other projects,

and can generalize or tailor the component, package it with the necessary attri-

butes for future reuse and store it in the repository.

As an initializing activity, the Factory can analyze prior systems for reusable

components and re-engineer them to seed the repository. It can develop com-

ponents, so they are easy to combine, modify with respect to certain criteria and

label and package appropriately.

Integration and Evaluation: The project will have the task of integrating the

components into its own specified design. These integrated components might be

returned to the Factory for future use. It will then evaluate the system based

upon the customer requirements and deliver the system.

5. IMPLICATIONS OF THE NEW LIFE CYCLE ORGANIZATION

5.1. Implications for Corporations

One of the major problems with software development in the past has been

that projects have been unable to explicitly reuse experience from prior projects

or contribute to the experience base for future projects. This has been due in

part to the fact that immediate project delivery goals and the more long-range

goals of reuse and learning are distinct and not easily paired. Project schedule

often takes precedence over the luxury of passing on learned experience.

-18-

The new life cycle organization divides the focus of software development
into two separate organizatlons. It separatesthe immediate project goals from
the long range learning and reuse-oriented goals. In the approach, the Project
Organization can focus on the customer needsand has the advantageof accessto
a knowledgeable support organization in the form of the Experience Factory.

The Experience Factory focuses on the organization's goals to learn and reuse. It

has the advantage of accumulating experience from a large number of projects

which provides it with a broader perspective than any particular project.

This organizational structure has many advantages. It should promote

higher quality and productivity because of reuse and learning. It can provide

better and more focused education and training for developers and provide better

methods and tools for them to use.

It provides the corporation with a corporate asset in the guise of the Experi-

ence Factory. The Experience Factory contains everything the organization has

learned and developed that is useful for future developments as well as an assess-

ment of the status of corporate quality and productivity. As the Experience Fac-

tory grows in its role and assets, the corporation can learn more and more from

the various experiences across the corporation.

There will be more emphasis on formalization of all parts of management

and development. Formal verification becomes cost effective since the correct

units will be used in many systems; it becomes more applicable since we will be

applying it to smaller units, at least in the beginning, where the technology is

manageable. Formal models of risk assessment can be used since the experience

base should provide a broad basis for understanding and comparison.

The organizational scheme has the advantage that it can start small and

expand with the growth in technology and the experience base. However, there

are several issues that must be dealt with in putting this organization in place,

e.g. financial and organizational.

This organization requires separate cost centers for the Project Organization

and the Experience Factory. There are several models of how the funding of the

Experience Factory might work. For example, it could be funded out of cor-

porate overhead which would grow with the success of the factory or projects

could be billed for factory items. The right model will depend upon the com-

pany and the organization and politics within that company.

This organization requires a careful definition of management and responsi-

bility structures. It is clear that we do not want to create new conflicts over

responsibility for problems with packaged experience.

This organization needs to be motivated and supported. Incentive and

reward structures need to be developed. We will need to learn from experience

gained from applying different financial and management structures.

- 19 -

5.2. Implications for Research

There are several implications for research based upon this organizational

structure. Many of the technologies already developed for programming in the

small are applicable in the factory domain. For example, verification technology

is already available for factory produced components and it is necessary and cost

effective because those units will be reused many times. Research activities can

focus on the transfer of these technologies. Therefore, user friendly tools to sup-

port verification are needed. Based upon this formalization, we should learn

more about the relevant primitives for particular application domains and how to

encapsulate them.

There are research activities associated with defining and tailoring models.

These include process models, methods and tools; product models of the various

products and qualities of those products; and models of information, like goal

generation languages, cost, resource allocation, risk, and defect prediction.

Models must be defined for the Project Organization and the Experience Factory

and must take into account their interface. This involves the definition of

languages for defining these models and tool generators, i.e. tools that can be

instantiated to support variations of a method.

There are research activities associated with generating larger product units

from the Experience Factory. These include defining models of module intercon-

nection languages that scale up, combining specifications and verifying them, and

combining test plans to validate integrated components.

There are research activities associated with the building and accessing of

the experience base, e.g., mechanisms for encoding lessons learned into a model,

tools for generating goals and mapping them onto measures, models that permit

the model to learn automatically.

5.3. Implications for Education

The organizational scheme provides a focus for many of the technologies

already taught at the University and so makes much of the current education

more relevant. Topics that require more emphasis are formalisms of all kinds,

e.g., verification technologies, formal requirements and specification notations,

formal models of measurement and management. There is a need to teach stu-

dents how to develop, use and assess methods and tools and deal with access and

retrieval of libraries. Reuse and learning technologies need to be made available.

There is a clear entry path for new software engineers through the Com-

ponent Factory where they can deveiop Small components under careful gUidanCe

and tool support and]earn from the general experience base. As their experience

grows they can be moved into any of the other higher level activities, e.g., the

Project Organization, or other parts of the Experience Factory.

- 20 -

6. RESEARCH ACT IXr[_TIES AT MARYLAND THAT SUPPORT
THE NEW LIFE CYCLE

The paradigms and organization described in this paper offer a framework

for research that focuses on the key issues for improving the software process and

product in a context that permit the research to be used and experimented with

in an industrial setting. Over the past dozen years, at the University of Mary-

land, we have been working on several research projects whose goal is to evolve

to this framework.

The projects are organized into those dealing with the instantiation of the

improvement paradigm in the SEL [5,46], where the concepts of the Project

Organization and the Experience Factory have been evolving, the TAME project

which is automating support for this framework in a formal way, and a variety

of other projects which are attempting to understand, formalize and improve

various process and product characteristics.

A major source of activity has been the Software Engineering Laboratory

(SEL), a joint venture of the NASA Goddard Space Flight Center, the University

of Maryland, and Computer Sciences Corporation. The SEL has informally acted

as an Experience Factory that supports project development. The application

domain is ground support software for satellites. We have been building models

and supplying these models and lessons learned back to projects so they can

improve their process and product. This work has been performed via experi-

ments of various kinds, dealing with resource, defect, process, and product

models.

In an attempt to better understand the environment we have used data col-

lected during development to build various descriptive models of the SEL

environment. In this way we have formalized knowledge from raw data to for-

mal models or baselines and made the results available to the project organiza-

tion for use in characterizing, planning and evaluating the project.

We have collected data on resource expenditures, applied various existing

models [32,47,49,61] and eventually built and tailored models that explicitly

described resource allocation in the SEL environment [2,8,10,15,30]. These are

used for estimating, planning and evaluating new projects.

We have developed baselines for defects by accumulating defect data over

many projects [62]. These defects a classified by phase and type. They vary

with different project classifications [16]. They provide insight into the environ-

ment, support for project management and evaluation, and point to areas areas

that need improvement in the process [18].

We have used various product metrics [41,45] to provide insight into the

characteristics of the products being developed as well as evaluating the useful-

ness of these metrics for the SEL environment [6,11,26,42]. Areas of new technol-

ogy that have been introduced, like Ada have generated the need for developing

- 21 -

new metrics to characterize new product qualities [12,40]. We have used these
metrics as baselinesto provide the project manager with insights as to what the
problems may be with the current development [38].

With regard to processimprovement, we have built descriptive and perscrip-
tive models of processes,methods and techniques and experimented with their
application. The results of our studies are formalized and reusedfor future pro-
jects within the limits of the technology available.

In some cases, we have performed controlled experiments in which we
analyzed the effects of various methods and techniques before recommending
them on actual projects. We would then perform case study experiments to
evaluate the effect of the method or technology on an actual project development
to assurethat it scalesup and is applicable to the SEL environment. For exam-
ple, we rag controlled experiments on a set of structured programming methods
and techniques [17], various testing and reading techniques [23,54], object
oriented design in Ada [12,40]and the Cleanroom processmodel [59].

We then apply these approachesto projects within the project organization.
We evaluate their effect there, and make recommendations, write lessons learned

documents, and refine or change the models to incorporate what we have learned.

In this way, the experiences gained from applying a particular model from the

experience base is improved based upon the lessons learned from applying the

model so that it can be used for future projects. Two case studies currently

being run in the SEL, based upon controlled experiments, are the use of object

oriented development in Ada [1,14,35] and the application of the Cleanroom pro-
cess.

In other instances we have developed models and experimented directly on

the projects. For example, we have evaluated the test methodology used for

acceptance test [51] and the methods used for maintenance [55].

Parts of the data collection process have been automated for the FORTRAN

environment [37, 43] and are being automated for the transition to Ada [39].

Other tools have been developed that help support the various technologies used.

Parts of the evaluation process have been automated using a knowledge base to

create a decision support system [50,60].

The Tame project has focused on the architecture for the measurement and

evaluation processes [19]. Work has been done by using studies performed in the

SEL to define the process improvement mechanisms [18]. We have devised a

resource planning and feedback model that is consistent with the Improvement

Paradigm [43].

The Goal/Question/Metric Paradigm has been applied in a variety of

environments other than the SEL and has evolved based upon these activities

[29,53,581 •

- 22-

We are currently working on supporting the automation of the generation of
operational goals in a reasonably complete and consistent manner. A key aspect
of the approach is that project personnel can generate goals that can be meas-
ured and evaluated. We are working on extending the GQM templates into a
goal generation language that will aid the goal writer in articulating questions
and metrics basedupon the goal and the model of the object of interest. We are
currently experimenting with hypertext and attribute grammar technology to
develop prototypes of this automated support mechanism.

We are in various stagesin the development of three measurement tools for
analyzing programs in Ada and C. A source code analyzer for various syntactic
metrics, such as cyclomatic complexity and software science metrics, has been
developed for Ada (ASAP) [38] and C (CSAP). A structural coverageanalyzer
(SCA) is under development for Ada [63]. Data bindings analyzers are being
developed for Ada and C based on prior versions of the tools for FORTRAN,
SIMPL, and PL/C.

We have developeda set of requirements and defined a system architecture
for measurementtool generations using a parser generator that retains the parse
tree for further transformations [48], an enhancement of YACC and are experi-
menting with the prototypes of this tool generation system.

With regard to reuse, we have developed a model of a reuse support
environment that can exist within the TAME framework [20]. We have applied
the model to the maintenance processto show the advantagesof viewing mainte-
nanceas a reuseprocess[7].

We are developing a model of reuse consistent with the approach presented
in this paper that classifiesthe objects as they exist in the experiencebase, the
reuseactivities and the objects as they are reused [21]. For example, the reusable
object can be classifiedaccording to the characteristics of the unit itself, its inter-
faces, and its context. The model recognizesthe need to assessthe qualities of

the reusable object based upon the characteristics of the project in which it will

be reused.

We are working on a language and support system that takes elementary

processes and generalizes them into more complex processes. Elementary

processes correspond to the "basic algorithms" used to perform small tasks, such

as the addition of two atomic units. Our goal is to identify useful sets of elemen-

tary processes, and then show how they can be combined and extended to per-

form more complex actions (such as the addition of a stream of atomic units.)

Using our language, abstract data structures may be mapped onto particular

structures (e.g., the addition process for streams could be mapped onto a process

for addition of arrays of numbers), and also composed with other structures (e.g.,

an array addition task could be composed with a division task in order to create

a module for computing means.) Finally the system will package resulting

processes into an acceptable language component, whether a procedure or func-

tion. Our current langague supports only functional processes, a future step is to

- 23 -

support the creation of data abstractions or modules.

To study the issueof code reuse,the LASER project is currently building a
system that examinesexisingsystemsin order to study and extract code that can
be reused to seed a component repository. The system measures the various
components in the system and identifies candidate reusable components based
upon their lack of complexity, reusability within the existing system, indepen-
dence, etc. These candidate components are then isolated (made independent)
and qualified. The qualification involves the catagorization and classification
based upon a number of attributes, and the association of a functional
specification with the component.

The approach expressedhere provides a focus for further research issues.
Someof the questionsfor which work hasbegun are:

• How can processmodels be formally expressedso they can be communicated,

analyzed and tailored?

• How can various models be stored so they can be accessed by the GQM tool

and help generate the automated collection of the appropriate measures?

• How can a specific process model be developed that satisfies the definition and

storage of the prior two questions?

• How can we better capture and reuse experiences in the form of lessons learned

from previous efforts?

• What other measurement data can be automatically collected?

• How could the set of measurement tools defined above be developed so that

they can be tailored for various types of measures, maximizing the reuse of sys-

tem components among the tools and the language independence?

• How can we classify experience so it can be appropriately reused?

• Based upon a specification, how can a component be devised quickly from ele-

mentary processes?

• How can we transform existing components to make them more independent,

and measure the cost of reuse?

• How can we have confidence that the factory-provided modules will do what

we want?

• How can we integrate aggregates of modules with their associated attributes so

that they can be analyzed, managed, and controlled?

• How can we verify properties of aggregates of modules, not just individual
modules?

• How can the test plans for components be combined to provide a test plan

and oracle for aggregate application structures?

- 24 -

7. CONCLUSIONS

The approach expressedin this paper hasevolvedover years of studying and

experimenting with software development and maintenance. It provides a com-

parable and consistent framework for both software development and software

engineering research. It recognizes and takes advantage of the experimental

nature of software engineering.

It allows us to understand how things are being done and where the prob-

lems are by studying the process and product in actual environments. It allows us

to formalize models of the process, product and knowledge. These models can

then be analyzed. They can be used to form a basis for research and at the same

time provide immediate input to project development.

From a research perspective, it provides a focus for research problems based

upon problems that need to be solved. It provides a framework to tie together

existing pieces of research.

From a corporate perspective, the approach can be applied directly and the

organization can grow and build its own experience base. It supports technology

transfer in a natural way and it ties the research and development organizations

closer together.

REFERENCES

[1] W. Agresti, "SEL Ada Experiment: Status and Design Experience," Proceed-

ings of the Eleventh Annual Software Engineering Workshop, NASA Goddard

Space Flight Center, Greenbelt, MD, December 1986.

[2] J. Bailey, V. R. B asili, "A Meta-Model for Software Development Resource

Expenditures," Proceedings of the Fifth International Conference on Software

Engineering, San Diego, USA, March 1981, pp. 107-116.

[3] V. R. Basili, "Data Collection, Validation, and Analysis," in Tutorial
Models and Metrics for Software Management and Engineering, IEEE

Catalog No. EHO-167-7, 1981, pp. 310-313.

on

[4] V. R. Basili, "Quantitative Evaluation of Software Engineering Methodol-

ogy," Proc. of the First Pan Pacific Computer Conference, Melbourne, Australia,

September 1985 [also available as Technical Report, TR-1519, Dept. of Com-

puter Science, University of Maryland, College Park, July 1985].

[5] V. R. Basili, "Can We Measure Software Technology: Lessons Learned from

8 Years of Trying," Proceedings of the Tenth Annual Software Engineering

Workshop, NASA Goddard Space Flight Center, Greenbelt, MD, December

1985.

- 25 -

[6] V. R. Basili, "Evaluating Software Characteristics:Assessmentof Software
Measures in the Software Engineering Laboratory," Proceedings of the Sixth

Annual Software Engineering Workshop, NASA Goddard Space Flight Center,

Greenbelt, MR, 1981.

[7] Victor R. Basili, "Software Maintenance = Reuse-Oriented Software

Development," in Proc. Conference on Software Maintenance, Key-Note

Address, Phoenix, AZ, October 1988 [also available as Technical Report, TR-

2244, Dept. of Computer Science, University of Maryland, College Park, July

1985].

[8] V. R. Basili, J. Beane, "Can the Parr Curve help with the Manpower Distri-

bution and Resource Estimation Problems," Journal of Systems and Software,

vol. 2, no. 1, 1981, pp. 47- 57.

[9] V. R. Basili, G. Caldiera, "Reusing Existing Software," Technical Report-

2116, Institute for Advanced Computer Studies, University of Maryland, College

Park, Maryland, October 1988.

[10] V. R. Basiti, K. Freburger, "Programming Measurement and Estimation in

the Software Engineering Laboratory," Journal of Systems and Software, vol. 2,

no. I, 1981, pp. 47-57.

[11] V. R. Basili, D. H. Hutchens, "An Empirical Study of a Syntactic Measure

Family," IEEE Transactions on Software Engineering, vol. SE-9, no. 11,

November 1983, pp. 664-672.

[12] V. R. Basili, E. E. Katz, "Metrics of Interest in an Ada Development,"

Proc. of the IEEE Computer Society Workshop on Software Engineering Tech-

nology Transfer, April 1983, pp. 22-29.

[13] V. R. Basili, E. E. Katz, "Examining the Modularity of Ada Programs,"

Proc. of the Joint Ada Conference, Arlington, Virginia, March 16-19, 1987.

[14] V. R. Basili, E. E. Katz, N. M. Panlilio-Yap, C. LoggiaRamsey, S.

Chang, "Characterization of an Ada Software Development," IEEE Computer

Magazine, September 1985, pp. 53-65.

[15] V. R. Basili, N. M. Punlilio--Yap, "Finding Relationships Between Effort

and Other Variables in the SEL," IEEE COMPSAC, October 1985.

[16] V. R. BasiIi, B. Perricone, "Software Errors and Complexity: An Empirical

Investigation," ACM Communications, vol. 27, no. 1, January 1984, pp. 45-52.

[17] V. R. Basili, R. Reiter, Jr., "A Controlled Experiment Quantitatively

Comparing Software Development Approaches," IEEE Transactions on Software

Engineering, vol. SE-7, no. 5, May 1981, pp. 299-320.

-26 -

[18] V. R. Basili, H. D. Rombach, "Tailoring the SoftwareProcessto Project
Goals and Environments," Proc. of the Ninth International Conference on
Software Engineering, Monterey, CA, March 30 - April 2, 1987,pp. 345-357.

[19]V. R. Basili, H. D. Rombach "The TAME Project: Towards
Improvement-Oriented Software Environments," IEEE Transactions on
Software Engineering, vol. SE-14, no. 6, June 1988,pp. 758-773.

[20] V. R. Basili, H. D. Rombach, "Software Reuse:A Comprehensive
Framework," CS-TR-2158, Department of Computer Science, University of
Maryland, CollegePark, Maryland.

[21]V. R. Basili, H. D. Rombach, J. Bailey, and B. G. Joo, "Software
Reuse:A Framework," Proc. of the Tenth Minnowbrook Workshop on
Software Reuse,Blue Mountain Lake, New York, July 1987.

[22]V. R. Basili, R. W. Selby, Jr., "Data Collection and Analysis in Software
Researchand Management," Proc. of the American Statistical Association and
BiomeasureSociety Joint Statistical Meetings,Philadelphia, PA, August 13-16,
1984.

[23] Victor R. Basili, R. W. Selby, "Comparing the Effectivenessof Software
Testing Strategies," IEEE Transactions on SoftwareEngineering, Vol.
SE-13, No. 12,December1987,pp. 1278-1296.

[24] V. R. Basili. R. W. Selby, Jr., "Calculation and Useof an Environment's
Characteristic Software Metric Set," Proceedingsof the Eighth International
Conferenceon Software Engineering,London, UK, August 1985.

[25] V. R. Basili. R. W. Selby,D. H. Hutchens, "Experimentation in
Software Engineering," IEEE Transactions on SoftwareEngineering, vol.SE-
12, no.7, July 1986,pp.733-743.

[26] V. R. Basili. R. W. Selby, and T.-Y. Phillips, "Metric Analysis and Data
Validation AcrossFortran Projects," IEEE Transactions on Software Engineer-
ing, vol. SE-9, no. 6, November 1983,pp. 652-663.

[27] V. R. Basili A. J. Turner, "Iterative Enhancement:A Practical Tech-
nique for Software Development," IEEE Transactions on SoftwareEngineering,
vol. SE-1, no. 4, December1975.

[28]V. R. Basili D. M. Weiss, "A Methodology for Collecting Valid Software
Engineering Data," IEEE Transactions on Software Engineering, vol. SE-10,
no.6, November 1984,pp. 728-738.

[29]V. R. Basili D. M. Weiss, "Evaluation of a Software RequirementsDocu-
ment by Analysis of ChangeData," Proceedingsof the Fifth International

- 27 -

Conferenceon Software Engineering, SanDiego, USA, March 1981,pp. 314-323.

[30]V. R. Basili, M. V. Zelkowitz, "Analyzing Medium ScaleSoftware
Development," Proceedingsof the Third International Conferenceon Software
Engineering, Atlanta, Georgia, USA, May 1978, pp. 116-123.

[31] B. W. Boehm, "Software Engineering," IEEE Transactions on Computers,

vol. C-25, no. 12, December 1976, pp. 1226-1241.

[32] B. W. Boehm, "Software Engineering Economics," Prentice-Hall, Engle-

wood Cliffs, N J, 1981.

[33] B. W. Boehm, "A Spiral Model of Software Development and Enhance-

ment," ACM Software Engineering Notes, vol. 11, no. 4, August 1986, pp. 22-

42.

[34] B. W. Boehm, J. R. Brown, and M. Lipow, "Quantitative Evaluation of

Software Quality," Proceedings of the Second International Conference on

Software Engineering, 1976, pp. 592-605.

[35] C. Brophy, W. Agrestl, and V. R. Basili, "Lessons Learned in Use of Ada

Oriented Design Methods," Proc. of the Joint Ada Conference, Arlington, Vir-

ginia, March 16-19, 1987.

[36] W. J. Decker, W. A. Taylor, "Fortran Static Source Code Analyzer Pro-

gram (SAP)," Technical Report SEL-82-002, NASA Goddard Space Flight

Center, August 1982.

[37] C. W. Doerflinger, V. R. Basili, "Monitoring Software Development

Through Dynamic Varlables," IEEE Transactions on Software Engineering, vol.

SE-I1, no. 9, September 1985, pp. 978-985.

[38] D. L. Doubleday, "ASAP: An Ada Static Source Code Analyzer Program,"

Technical Report, TR-1895, Deptartment of Computer Science, University of

Maryland, College Park, August 1987. :

[39] M. Dyer, "Cleanroom Software Development Method," IBM Federal Sys-

tems Division, Bethesda, Maryland, October 14, 1982.

[40] J. Gannon, E. E. Katz, and V. R. Basili, "Measures for Ada Packages:

An Initial Study," Communications of the ACM, vol. 29, no. 7, July 1986, pp.

616-623.

[41] M. H. Halstead, "Elements of Software Science," Elsevier North-Holland,

New York, 1977.

[42] D. H. Hutchens, V. R. Basili, "System Structure Analysis: Clustering with

- 28 -

Data Bindings," 1EEE Transactions on Software Engineering, August 1985,pp.
749-757.

[43] D. R. Jefferey, V. R. Basili, "Validating the TAME ResourceData Model,"
Proceedingsof the Tenth International Conferenceon Software Engineering,
Singapore, April, 1988,pp. 187-201.

[44]E. E. Katz, H. D. Rombach, and V. R. Basili, "Structure and Maintai-
nability of Ada Programs: Can We Measurethe Differences?," Proc. of the
Ninth Minnowbrook Workshop on Software Performance Evaluat_ion,Blue Moun-
tain Lake, New York, August 5'8, 1986.

[45] T. J. McCabe, "A Complexity Measure," IEEE Transactions on Software
Engineering, December1976, pp. 308-320.

[46] F. E. McGarry, "Recent SEL Studies," Proceedingsof the Tenth Annual
Software Engineering Workshop, NASA Goddard SpaceFlight Center, December
1985.

[47] F. N. Parr, "An Alternative to the Rayleigh Curve Model for Software
Development Effort," IEEE Transactions on Software Engineering, vol. SE-6,
no. 3, March 1980.

[48] J. Purtilo and J. Callahan, "Parse Tree Annotations", Communications of
the ACM, to appear.

[49] L. Putnam, "A General Empirical Solution to the Macro Software Sizing
and Estimating Problem," IEEE Transactions on Software Engineering, vol.

SE-4, no. 4, April 1978, pp. 345-361.

[50] C. Loggia-Ramsey, V. R. Basili, "An Evaluation of Expert Systems for

Software Engineering Management," IEEE Transactions on Software Engineer-

ing, Vol. 15, no. 6, June 1989, pp. 747-7597.

[51] J. Ramsey, V. R. Basili, "Analyzing the Test Process Using Structural

Coverage," Proceedings of the Eighth International Conference on Software

Engineering, London, UK, August 1985.

[52] H. D. Rombach, "Software Design Metrics for Maintenance," Proceedings

of the Ninth Annual Software Engineering Workshop, NASA Goddard Space

Flight Center, Greenbelt, MD, November 1984.

[53l H. D. Rombach, V. R. Basill, "A Quantitative Assessment of Software

Maintenance: An Industrial Case Study," Conference on Software Maintenance,

Austin, Texas, September 1987.

[54] H. D. Rombach, V. R. Basili, and R. W. Selby, Jr., "The Role of Code

- 29 -

Reading in the Software Life Cycle," Proc. of the Ninth Minnowbrook Workshop

on Software Performance Evaluation, Blue Mountain Lake, New York, August

5-8, 1986.

[55] H. D. Rombach, B. T. Ulery, "Establishing a Measurement-Based Mainte-
nance Environment Program: Lessons Learned in the SEL", Proceedings of the

IEEE Conference on Software Maintenance, Miami Beach, October, 1989.

[56] W. W. Royce, "Managing the Development of Large Software Systems:

Concepts and Techniques," Proceedings of the WESCON, August 1970.

[57] R. W. Selby, Jr., "Incorporating Metrics into a Software Environment,"

Proceedings of the Joint Ada Conference, Arlington, VA, March 16-19, 1987, pp.

326-333.

[58] R. W. Selby, Jr., V. R. Basili, "Analyzing Error-Prone System Coupling

and Cohesion," Technical Report TR-88-46, Institute for Advanced Computer

Studies, University of Maryland, College Park, Maryland, June 1988.

[59] R. W. Selby, Jr., V. R. Basili, and T. Baker, "CLEANROOM Software

Development: An Empirical Evaluation," IEEE Transactions on Software

Engineering, Vol. 13 no. 9, September, 1987, pp. 1027-1037.

[60] J. D. Valett, "The Dynamic Management Information Tool

(DYNAMITE):Analysis of the Prototype, Requirements and Operational

Scenarios," M.Sc. Thesis, University of Maryland, 1987.

[61] C. E. Walston, C. P. Felix, "A Method of Programming Measurement

and Estimation," IBM Systems Journal, vol. 16, no. 1, 1977, pp. 54-73.

[62] D. M. Weiss, V. R. Basili, "Evaluating Software Development by Analysis

of Changes: Some Data from the Software Engineering Laboratory," IEEE Tran-

sactions on Software Engineering, vol. SE-11, no. 2, February 1985, pp. 157-
168.

[63] L. Wu, V. R. Basili, and K. Reed, "A Structure Coverage Tool for Ada

Software Systems," Proc. of the Joint Ada Conference, Arlington, Virginia,

March 16-19, 1987.

[64] M. Zelkowitz, R. Yeh, R. Hamlet, J. Gannon, and V. R. Basili, "Software

Engineering Practices in the U.S. and Japan," IEEE Computer Magazine, June

1984, pp. 57-66.

